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Daily precipitation has an enormous impact on human activity, and the
study of how it varies over time and space, and what global indicators influ-
ence it, is of paramount importance to Australian agriculture. We analyze over
294 million daily rainfall measurements since 1876, spanning 17,606 sites
across continental Australia. The data are not only large but also complex,
and the topic would benefit from a common and publicly available statistical
framework. We propose a Bayesian hierarchical mixture model that accom-
modates mixed discrete-continuous data. The observational level describes
site-specific temporal and climatic variation via a mixture-of-experts model.
At the next level of the hierarchy, spatial variability of the mixture weights’
parameters is modeled by a spatial Gaussian process prior. A parallel and dis-
tributed Markov chain Monte Carlo sampler is developed which scales the
model to large data sets. We present examples of posterior inference on the
mixture weights, monthly intensity levels, daily temporal dependence, offsite
prediction of the effects of climate drivers and long-term rainfall trends across
the entire continent. Computer code implementing the methods proposed in
this paper is available as an R package.

1. Introduction. Australia is the world’s driest inhabited continent and is sub-
ject to highly variable rainfall patterns. Rainfall classifications by the Australian
Government Bureau of Meteorology (BOM) appear in Figure 1(a) and show ex-
treme spatial variability.5 In Australia’s large arid interior, which extends to the
central west and south coasts, some stations receive as little as 150 mm of an-
nual median rainfall, while in Australia’s tropical north some stations receive as
much as 4000 mm. Rainfall in the southern coastal fringe is winter dominant,
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FIG. 1. Australian Bureau of Meteorology (BOM) rainfall categories with median annual rainfall
levels in millimeters (a) and the locations of the 17,606 rainfall observation sites analyzed in this
article (b). Eight sites, chosen to reflect the rainfall categories and used as examples throughout this
paper, are marked in red in (b).

while rainfall in the mid-east coast is summer dominant. The cycle of droughts
and flooding rains6 is a common feature of many locations and, indeed, both
droughts and floods often occur simultaneously in different regions (see Risbey
et al. (2009), Ummenhofer et al. (2009) and references therein). Although this
spatial and temporal variability in rainfall is a natural part of Australia’s climate,
these patterns cause economic and environmental problems, most notably in agri-
culture, ecosystems and civic water supplies (see Ummenhofer et al. (2015), van
Dijk et al. (2013)). As a result, the Australian Government is increasingly relying
on the scientific understanding of the drivers of Australian rainfall to inform policy
making (Stone (2014)).

Oceanic and atmospheric interactions in the Pacific, Indian and Southern
Oceans are thought to be the main climate drivers of the variability in Australian
rainfall. There is debate surrounding the boundaries and overlap of the influences
of these climate drivers on rainfall across different regions of Australia (see, among
others, Ummenhofer et al. (2009, 2011), Feng, Li and Li (2010), Cai et al. (2012),

6Dorothea Mackellar, My Country.
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King, Alexander and Donat (2013) and Pepler et al. (2014)), but, broadly speaking,
they are most influential in northern and eastern Australia via the Pacific Ocean,
across central and southern Australia via the Indian Ocean and the higher latitudes
of Australia via the Southern Ocean (see Risbey et al. (2009) for an overview).

Despite significant advances in rainfall modeling, there are two shortcomings in
the climate science literature. First, it is common to aggregate or smooth daily rain-
fall measurements. This practice ignores the aspects of incidence (rainfall versus
no rainfall days) and missingness, and masks nearby spatial/temporal dependen-
cies, which results in an underestimation of uncertainty. Second, there is a scarcity
of coherent probabilistic models, which are required to develop a statistical under-
standing of the evolution of rainfall across both time and space, and the depen-
dence of this evolution on major climate drivers. This article makes progress on
these issues by proposing a general Bayesian method to jointly assess the spatial
variability of the impact of climate drivers and other covariates on the evolution of
daily rainfall across the Australian continent.

Probabilistic modeling of Australian daily rainfall has two competing chal-
lenges. First, datasets are often large; our method is applied to approximately
2.94 × 108 time series measurements on 17,606 sites distributed across the en-
tire Australian continent, an area of 7.7 million square kilometers, for the years
1876–2015 inclusive. Figure 1(b) shows the number and location of these sites.
Second, daily rainfall measurements have several nonstandard features which are
tricky to model: they contain many zeros and have a heavy tailed nonzero rain-
fall component; they exhibit short, medium and long term dependencies; they vary
spatially; and they often have many missing observations—in our application there
are 4.4 × 107 missing observations. Thus, a model needs to be sufficiently com-
plex to capture these features, yet parsimonious so that estimation, inference and
prediction are computationally feasible for very large datasets.

Statistical modeling of the temporal and spatial evolution of daily rainfall mea-
surements has a rich history. Richardson (1981) introduces a model of rainfall
incidence with a two-state Markov chain for rain and no rain, with an exponen-
tial distribution for nonzero rainfall days and a state transition probability that is
time-varying. This model has seen many extensions over the following decades,
including replacing the exponential distribution with a gamma distribution (Stern
and Coe (1984)), with a mixture of two exponentials (Wilks (1999)), and with a
mixture of gamma and Generalized Pareto distributions (Vrac and Naveau (2007)).
Furrer and Katz (2007) extend Richardson’s approach to a generalized linear mod-
eling (GLM) framework. Kleiber, Katz and Rajagopalan (2012) extend the model
in Furrer and Katz (2007) to a spatial setting, with a mixture of two components,
where the mixture weights depend on covariates, and the spatial variability of the
regression parameters is modeled via a latent Gaussian process. More recently
Naveau et al. (2016) have developed a class of methods for modeling marginal
daily rainfall, based on extreme value theory, that jointly accommodates low, mod-
erate and heavy rainfall.
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Most relevant to our work are two recent articles (Holsclaw et al. (2016, 2017))
which take a Bayesian approach. Holsclaw et al. (2016) propose a hidden Markov
model with a state for zero rainfall and a mixture of an exponential and a gamma
distribution to allow for nonzero rainfall days. They apply their method to daily
rainfall measurements in northern India and Pakistan, and the upper Yangtze River
basin in China, using an ordered multinomial probit model for the probabilities
of rainfall states. These state transition probabilities are allowed to vary in time,
but the spatial dependence of site-specific parameters is ignored. Holsclaw et al.
(2017) extend the work of Holsclaw et al. (2016) to a region-wide mixture model
for analyzing the temporal evolution of rainfall states for the subcontinent of India.
A contribution of their work is the use of the Pólya–Gamma data augmentation
algorithm proposed by Polson, Scott and Windle (2013), to facilitate the MCMC
scheme needed for the high dimensional integration. One aim of their article is
to provide a sampler that requires little tuning and is capable of handling about
6.9 × 105 observations (63 sites over 30 years).

Our article makes three main contributions. The first is a systematic climate
modeling of the effects of the aforementioned oceanic/atmospheric interactions
on rainfall that accounts for many sources of uncertainty and produces a spatially
varying posterior distribution on a scale as large as the Australian continent. To
this end, we develop a hierarchical Bayesian mixture model which can be tailored
to answer many research questions regarding daily rainfall, constituting the second
contribution of this article.

At the observational level, we describe the temporal evolution of daily rainfall
via a mixture-of-experts model (Jacobs et al. (1991), Rosen, Stoffer and Wood
(2009), Wood, Rosen and Kohn (2011)). The mixture components are probability
density/mass functions for daily rainfall. The mixture weights are parameterized to
depend upon covariates that include long-term climate trends, short term autocor-
relation and seasonality, and factors which model the impact of external climate
drivers and their interactions. Although spatial dependencies exist at the observa-
tional level, the size of the problem necessitates a parsimonious model. We do so
by modeling spatial variability not at the observational level but rather by allow-
ing the parameters of the mixture weights to vary, using a two-dimensional spatial
Gaussian process (GP) prior (Wahba (1990), Wood (2013)). The posterior distri-
butions of the GP mean parameters are used for climate inference.

The third contribution is the construction of an MCMC algorithm which scales
to genuinely large datasets. There are computational challenges in applying any
model to such a large data set, parsimonious or not. Similar to Holsclaw et al.
(2017), we use the latent variable approach of Polson, Scott and Windle (2013),
such that the conditional distributions of these latent variables and the mixture
weight parameters permit Gibbs sampling. A conjugate prior for the gamma dis-
tribution, as described in Damsleth (1975), also allows the full conditional distri-
butions of the mixture component parameters to be updated via a Gibbs step. We
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show how to make model estimation efficient, using distributed and parallel com-
puting, and provide software in the form of an R package (R Core Team (2016)).

The paper proceeds as follows. Section 2 describes the data collection and the
construction of the indices of the external climate drivers. Section 3 outlines the
general model and how it is tuned for this application. Section 4 details the im-
plementation of the MCMC scheme and how this implementation uses distributed
computing to handle the large quantity of data. Section 5 presents some diagnostics
for the model and posterior inference on the mixture weights, monthly intensity
levels, daily temporal dependence, out-of-sample prediction of the effects of cli-
mate drivers and long-term rainfall trends on daily rainfall. Most inferences show
broad agreement with previous analyses but some do not, particularly those con-
cerning the oceanic/atmospheric interactions over the Southern Ocean. Section 6
concludes the article.

Three supplements are also available: Bertolacci et al. (2019a) presents the
derivation of the conditional distributions required in the MCMC algorithm;
Bertolacci et al. (2019b) contains a comparison of two variants of our model;
Bertolacci et al. (2019c) presents model diagnostics including metrics of spatial
dependency and simulation studies that demonstrate our model’s ability to per-
form climate inference in the presence of spatially correlated data and excessively
heavy-tailed data.

2. The data.

2.1. Rainfall data. We use daily rainfall measurements on 17,606 Australian
observational sites listed by BOM that lie above latitude 50°S and between longi-
tudes 110°W to 155°W7 (see Figure 1(b)). BOM describes rainfall measurements
at its observational sites as:8

Rainfall includes all forms of water particles, whether liquid (for example, rain or driz-
zle) or solid (hail or snow), that fall from clouds and reaches the ground. The rain
gauge is the standard instrument for recording rainfall, which is measured in millime-
tres. Rainfall is generally observed daily at 9 am local time—this is a measure of the
total rainfall that has been received over the previous 24 hours.

For the purposes of this study we take the rainfall measurement for a given date
and site to be the rainfall value for that day, and make no distinction as to whether
it might be snow, hail or otherwise. The analysis is from February 1st, 1876 to
December 31st, 2015, resulting in more than 294 million days of rainfall. The start
date is the earliest available recording of the Southern Oscillation Index (SOI)
provided by BOM.

7Available from http://www.bom.gov.au/climate/data/.
8http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml
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FIG. 2. Daily rainfall measurements from January 1st, 2005 to December 31st, 2009, for eight
sites. BOM rainfall classifications are indicated in [brackets]. Days with zero rainfall are left blank
and missing data are colored red.

Figure 2 presents rainfall measurements from January 1st, 2005, to December
31st, 2009, for eight sites. These sites are chosen to represent the eight most com-
mon rainfall classifications in Figure 1(a), and are marked in Figure 1(b). Days
with zero rainfall are left blank, and missing data are colored red. Figure 2 in-
dicates that there are substantial gaps in the dataset which take two forms: gaps
before a site opens or after it closes, and gaps within the lifetime of a site. The
former do not enter the analysis, so that individual sites may contain as few as 89
and as many as 51,102 observations. We treat the latter gaps as missing values, and
by these criteria, there are 44,000,301 missing observations.

Rainfall incidence plays an important role in Australian rainfall. Table 1 reports
the proportion of zero-rainfall days for the same eight sites across the entire obser-
vational period for January (in the Australian summer) and July (in the Australian
winter). Oenpelli has 99% of days in winter and 34% of days in summer record-
ing zero rainfall. In comparison, Cape Naturaliste has 25% of days in winter and
88% of days in summer recording zero rainfall. Finally, some sites are classified
as uniform, which means that they show little difference between January and July
rainfall incidence. Across all sites and over the entire observational period, approx-
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TABLE 1
Proportion of days with no rain in January and July for eight sites over the entire observational

period

Site January July

Birdsville Police Station (38002) [Arid] 0.92 0.95
Cambooya Post Office (41011) [Summer] 0.73 0.81
Cape Naturaliste (9519) [Winter Dominant] 0.88 0.25
Cataract Dam (68016) [Uniform] 0.66 0.73
Eudunda (24511) [Winter] 0.86 0.53
Gabo Island Lighthouse (84016) [Uniform] 0.69 0.54
Oenpelli (14042) [Summer Dominant] 0.34 0.99
Sorell (Whitlea) (94063) [Uniform] 0.73 0.62

imately two thirds of the rainfall measurements in the dataset are identically equal
to zero.

2.2. Climate indices. We now outline the construction of indices used as prox-
ies for the oceanic/atmospheric drivers of rainfall. These include:

1. the SOI, which measures the difference in surface air pressure between Tahiti
and Darwin (Troup (1965)), for the Pacific Ocean;

2. the Dipole Mode Index (DMI), which measures the change in sea surface
temperature gradients between the tropical western Indian Ocean and the tropical
south-eastern Indian Ocean (Saji et al. (1999), Rayner et al. (2011)), for the Indian
ocean; and

3. the Southern Annular Mode (SAM), which measures the difference in zonal
mean sea level pressure at 40°S and 65°S (Gong and Wang (1999), Compo et al.
(2011)), for the Southern Ocean.

We use monthly values of the SOI sourced from the BOM,9 which are calculated
as

SOIM = �P̄M − �PM

sd(�PM)
,

where �P̄M denotes the average difference in Mean Sea Level Pressure (MSLP)
between Tahiti and Darwin in month M , and �PM and sd(�PM) denote the long-
term average and standard deviation of the same quantity, respectively, for the
month in question. The long-term averages are derived from the reference period
1933 to 1992.

9http://www.bom.gov.au/climate/current/soi2.shtml.

http://www.bom.gov.au/climate/current/soi2.shtml
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For the DMI, we adopt the procedure as calculated by Japan Agency for Marine-
Earth Science and Technology.10 This is defined as the difference between the Sea
Surface Temperature (SST) anomalies between the tropical western Indian Ocean
(50°E–70°E, 10°S–10°N) and the tropical south-eastern Indian Ocean (90°E–
110°E, 10°S–0°). The values used in this article are calculated using the Hadley
Centre Sea Ice and Sea Surface Temperature dataset (Saji et al. (1999), Rayner et
al. (2011)).

Finally, for the SAM we use the empirical definition given by Gong and Wang
(1999) as,

SAMM = P40,M − P65,M,

where P40,M and P65,M are the normalized monthly zonal MSLP at 40°S and
65°S, respectively, using the Hadley Centre Sea Level Pressure dataset (Compo
et al. (2011)) to calculate the SAM at a monthly time scale.11

All the software used to collect the data has been made available online by the
authors. The software required for data acquisition is structured in two R packages.
The first R package retrieves the daily rainfall measurements from BOM, with
facilities to efficiently bulk-download data.12 The second R package retrieves and
calculates the climate indices.13

3. Model and priors.

3.1. General model for spatially varying marginal temporal processes. For
each site s, s = 1, . . . , S, we model the marginal temporal evolution of daily rain-
fall at times t = 1, . . . , T via the following mixture model:

(3.1) yt,s ∼
K∑

k=0

πt,s,k(·|δs,k,·)fk(yt,s |θk),

where the fk’s are mixture components comprising continuous and discrete proba-
bility distributions parameterized by θk , for k = 0,1, . . . ,K . The mixture weights,
πt,s,k , satisfying 0 ≤ πt,s,k ≤ 1 and

∑K
k=0 πt,s,k = 1, are parameterized by δs,k,· =

(δs,k,1, . . . , δs,k,P )′, where P is the number of covariates. Note that the “dot” no-
tation in δs,k,·, used subsequently, indicates a “slice” down the chosen dimension
of the three-dimensional array with values δs,k,p , s = 1, . . . , S, k = 0,1, . . . ,K ,
p = 1, . . . ,P . The model for the mixture weights is as follows; let zt,s be a latent
mixture component indicator such that (yt,s |zt,s = k) ∼ fk(yt,s |θk). We encode

10Obtained from http://www.jamstec.go.jp/frsgc/research/d1/iod/iod/dipole_mode_index.html.
11Obtained from https://www.esrl.noaa.gov/psd/gcos_wgsp/Gridded/data.hadslp2.html.
12https://github.com/mbertolacci/bomdata.
13https://github.com/mbertolacci/climatedata.

http://www.jamstec.go.jp/frsgc/research/d1/iod/iod/dipole_mode_index.html
https://www.esrl.noaa.gov/psd/gcos_wgsp/Gridded/data.hadslp2.html
https://github.com/mbertolacci/bomdata
https://github.com/mbertolacci/climatedata
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the site-specific temporal dependence through multinomial logits (Jacobs et al.
(1991)) of the form

(3.2) πt,s,k = P(zt,s = k|xt,s ,�s,·,·) = exp(x′
t,sδs,k,·)∑K

k=0 exp(x′
t,sδs,k,·)

,

where xt,s is a P ×1 vector of time-varying covariates, �s,·,· = (δs,1,·, . . . , δs,K,·),
and for identifiability, δs,0,· is set to 0. The construction of the mixture components
in equation (3.1) and covariates in equation (3.2) for our application are discussed
in Sections 3.2 and 3.3 below.

3.1.1. Model for spatially varying inference. We assume that the site-specific
parameters, δs,k,p , which prescribe the mixture weights, satisfy

δs,k,p ∼ N
(
μs,k,p, σ 2

k,p

)
where(3.3)

μ·,k,p ∼ GP
(
Wβk,p, τ 2

k,p�
)

(3.4)

for p = 1, . . . ,P and k = 0,1, . . . ,K , so that for each mixture component, k, and
coefficient, p, μs,k,p is a site-specific scalar mean, and σ 2

k,p is a common variance
across all sites, whose goal is to capture nonspatial variation between sites. In (3.4),
the spatial dependence among the μs,k,p is induced by a Gaussian process (GP)
prior (Wahba (1990)) with mean function Wβk,p and covariance matrix τ 2

k,p�.
Section 5.2 reports inference on the influence of SOI, DMI and SAM on daily
rainfall via the spatially varying posterior distributions of the μ·,k,p .

The sth row of the S × Q matrix W , ws,·, contains an intercept plus measure-
ments which identify the sth location, the vector βk,p contains the corresponding
unknown coefficients, and τ 2

k,p is a smoothing parameter. In the application consid-
ered in this article, the location of a site is specified by its latitude and longitude,
so that ws,· = (1, lats, lons)

′ and Q = 3. We use the reproducing kernel Hilbert
space defined by a two-dimensional thin-plate Gaussian process prior to construct
� in equation (3.4), expressed with a linear combination of basis functions, as
described in Wood (2013) (see also Bertolacci et al. (2019a)). To achieve compu-
tational feasibility, we truncate the basis expansion to the first 100 (out of 17,606)
basis vectors. In our application, this truncation explains 95% of the variation rep-
resented by �.

The spatial level of the hierarchical model is completed by placing independent
normal priors on βk,p , and independent inverse gamma (IG) priors on τ 2

k,p and

σ 2
k,p , for p = 1, . . . ,P and, k = 0,1, . . . ,K . In particular,

βk,p ∼ N(0,100I3),

σ 2
k,p ∼ IG(1.1,0.5),(3.5)

τ 2
k,p ∼ IG(1.1,0.5).
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3.2. Temporal variability. We model all temporal variation through equa-
tion (3.2). The covariates include an intercept term, a linear trend over the century
for long-term change, a periodic harmonic following the solar year for seasonality
and a first-order Markovian structure for short-term daily dependence. The exter-
nal climate drivers SOI, DMI and SAM, measured monthly, and their interactions,
are also included as covariates, because their impact is the main object of scientific
interest.

To define the relationship between rainfall on day t and the values of cli-
mate drivers in month M , let nM be the number of days in month M and de-
fine NM = ∑M

m=1 nm to be the total number of days from January 31st, 1876 un-
til the end of month M. Define the set of days corresponding to month M to be
DM = {t : NM−1 < t ≤ NM}. The values SOIt , DMIt , and SAMt in equation (3.6)
are constant and equal to SOIM , DMIM , and SAMM , if day t ∈ DM .

Let Nt be the number of days since January 31st, 1876, and define yeart to be
the number of solar years since January 1st, 1900. Thus, for January 1st, 1900,
yeart = 0 and Nt = 8736, so that yeart = (Nt − 8736)/365.25. Note that yeart
is a fractional number, which is negative for days before January 1st, 1900. For
example, for February 28th, 1878, yeart = −21.84, because Nt = 366 + 365 +
28 = 759. The systematic component, x ′

t,sδs,k,·, governing πt,s,k in equation (3.2)
becomes

x′
t,sδs,k,· = δs,k,1 + δs,k,2Trendt

+ δs,k,3 cos(2πyeart ) + δs,k,4 sin(2πyeart )

+ δs,k,5SOIt + δs,k,6DMIt + δs,k,7SAMt

+ δs,k,8(SOIt × DMIt )(3.6)

+ δs,k,9(SAMt × DMIt ) + δs,k,10(SOIt × SAMt )

+ δs,k,11(SOIt × DMIt × SAMt )

+
K∑

k′=1

δs,k,11+k′I
(
zt−1,s = k′),

where Trendt = yeart /100 is a linear trend, measured over a century.

3.3. Mixture components model. We assume that daily rainfall is a mixture of
a point mass at zero, for days with zero rainfall, and K gamma distributions, for
days with rain. Specifically,

(3.7) yt,s ∼ πt,s,0δ(0) +
K∑

k=1

πt,s,kGa(ak, bk),

where δ(0) is a Dirac delta function at 0, and Ga(ak, bk) is a gamma distribution
with density fk(y) ∝ yak−1e−y/bk and support y > 0. Model (3.7) is similar to the
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FIG. 3. A directed acyclic graph representation of the dependence between the model inputs, pa-
rameters, and outputs for the Australian daily rainfall application.

models of Holsclaw et al. (2016, 2017), who use a mixture of one exponential and
one gamma component (Holsclaw et al. (2016)), and a mixture of two exponen-
tials (Holsclaw et al. (2017)). To address label switching, we order the means of the
gamma components by akbk < ak′bk′ for k < k′. This ordering also leads to mean-
ingful inference. For example, if K = 2, equation (3.7) specifies one state for zero-
rainfall days and two states for the nonzero rainfall days, which may be interpreted
as no, low and high rainfall days. If K = 3, the components may be interpreted as
no, low, medium and high rainfall days. Figure 3 displays a graphical summary of
the model for the Australian daily rainfall described in equations (3.1)–(3.7).

The hierarchy is completed by placing independent priors on the gamma den-
sity parameters (ak, bk). Damsleth (1975) shows that a conjugate class of prior
distributions for i.i.d. gamma random variables results from bk ∼ IG(u, v) and
p(ak|bk) ∝ ρak−1[bakq

k 	(ak)
r ]−1. In our case, this is useful because the full con-

ditional distributions of (ak, bk) can now be sampled without the need for tuning
parameters. The values of u, v,ρ, q, r are chosen to be noninformative; for details,
see Bertolacci et al. (2019a).

4. Computing. We now outline the MCMC scheme and show how we ex-
ploit the structure of equations (3.1)–(3.4) to construct a parallel and distributed
algorithm that efficiently estimates the model parameters.

4.1. MCMC algorithm. As mentioned in Section 2, there are many days for
which daily rainfall measurements are missing. For each site s, denote by T mis

s

the set of indices for the missing values, by ymis
t,s (collectively ymis

s ) the missing
observations, by yobs

t,s (collectively yobs
s ) the observed values, and let ys be the

T × 1 vector ys = (ymis′
s ,yobs′

s )′ containing, temporally ordered, all missing and
observed values.

Some further notation is required to describe the algorithm. Let y = (y′
1, . . . ,

y′
S)′, zs = (z1,s , . . . , zT ,s)

′, z = (z′
1, . . . ,z

′
S)′, θ = (θ ′

0, θ
′
1, . . . , θ

′
K)′, μ·,k,p =

(μ1,k,p, . . . ,μS,k,p)′, σ 2
k,· = (σ 2

k,1, . . . , σ
2
k,P )′, δ·,k,p = (δ1,k,p, . . . , δS,k,p)′, and let

�s,\{k},· be the matrix �s,·,· with the kth column omitted. Then, initializing θ , z
and the missing values, the MCMC scheme iteratively draws from the following
distributions (details are provided in Bertolacci et al. (2019a)).
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1. p(θk|y,z), for k = 0,1, . . . ,K ;
2. For s = 1, . . . , S

2(a) p(zs |yobs
s ,�s,·,·, θ);

2(b) p(ymis
t,s |θ ,zs) for t ∈ T mis

s ;
2(c) p(δs,k,·|zs,μs,k,·,σ 2

k,·,�s,\{k}, ·), for k = 0,1, . . . ,K ;
3. For k = 0,1, . . . ,K and p = 1, . . . ,P

3(a) p(σ 2
k,p|δ·,k,p,μ·,k,p);

3(b) p(μ·,k,p|δ·,k,p,βk,p, σ 2
k,p, τ 2

k,p);

3(c) p(βk,p|μ·,k,p, τ 2
k,p);

3(d) p(τ 2
k,p|μ·,k,p,βk,p).

Step 2(a) is implemented using the forward-backward Gibbs step proposed by
Chib (1996) and is conditioned only on the observed values yobs

s to avoid an ab-
sorbing state. Drawing from p(δs,k,·|zs,μs,k,·,σ 2

k,·,�s,\{k}, ·) in 2(c) could be per-
formed via a Metropolis–Hastings step, but instead we use the data augmentation
approach of Polson, Scott and Windle (2013), which greatly simplifies the sampler,
given the size and complexity of our data.

4.2. Parallel implementation and running time analysis. The dataset de-
scribed in Section 2 contains around 300 million measurements and takes about
16 GB of disk space. For the case where K = 2, the matrix �s,·,· contains 26
entries at each s, yielding 457,756 parameters, and there are about 3000 more pa-
rameters to be estimated, corresponding to the higher levels of the hierarchical
model. Additionally, each measurement has K + 1 latent variables associated with
it: a zt,s for the current state, and K latent variables for the Pólya–Gamma-based
sampling scheme mentioned in the previous section, resulting in about 900 mil-
lion latent variables in total. The time required to sample these random variables
is prohibitive. For example, if K = 2, 40,000 iterations of the algorithm in stan-
dard serial computing would take about 400 days on a modern processor. If K = 3,
40,000 iterations are estimated to take about 600 days, but in practice it takes even
longer, because we require 60,000 iterations to ensure convergence and adequate
mixing. To make the estimation feasible, we exploit the model structure to create
a distributed implementation of the algorithm. As a result, eight hours are required
for K = 2, and 17 hours for K = 3.

The degree to which a parallel algorithm affords a speed-up over a serial al-
gorithm depends on the proportion of the total running time that can be split be-
tween available processing units (Amdahl (1967)). When an algorithm is running
in a distributed manner across multiple computing nodes, an additional significant
consideration is the time spent communicating between the nodes, which is mostly
determined by the total size of the messages sent (Lynch (1996)). Here, ymis

t,s , zt,s

and δs,k,· are conditionally independent across dimension s, and so can be sam-
pled simultaneously. Even on a single computer with multiple processor cores,
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this speeds up the sampling in proportion to the number of cores. To distribute
the algorithm, the dimension s can be split between computing nodes so that each
node sees only a fraction of the total data and must hold and sample only a frac-
tion of the 900 million latent parameters. As we describe below, communication
between the nodes is needed only to sample the parameters in the higher levels
of the hierarchical model, so the size of the messages is proportional only to the
number of sites rather than to the number of time periods. These two ideas jointly
yield an efficient distributed parallel implementation of the algorithm, which we
describe below.

To parallelize the sampling scheme, let N ≥ 1 be the number of computing
nodes with C cores each, designate node 1 the master, and divide the sites s evenly
between the N nodes. Then the sampler runs in parallel as follows.

• Each node performs steps 2(a) through 2(c) on each of the sites s allocated to it,
dividing the sites among the C cores within a node. Once complete, each node
sends node 1 its new samples of �s,·,· and the summary statistics

∑T
t=1 I (zt,s =

k)yt,s and
∑T

t=1 I (zt,s = k) logyt,s for each k = 1, . . . ,K .
• Node 1 performs step 1 using the summary statistics and the conditional distri-

butions of the component parameters, and steps 3(a) through 3(d) (the latter in
parallel for each pair (k, i) across the C cores of node 1) for the upper levels of
the hierarchy using the samples �s,·,·. The results are sent as messages to the
other N − 1 nodes.

We now analyze the runtime and message size per iteration of this algorithm.
Suppose Q′ = Q + B , where B is the number of basis vectors chosen for the
GP regression as described in Section 3.1 (B = 100 in this work). Then, with the
above parallelizations, and omitting the time taken for step 1, the running time of
an iteration of the sampler is of order

(4.1) O

(
S

NC

(
K2T + KP 2T + KP 3) + KP

C

(
Q′S + Q′3))

.

The first term corresponds to steps 2(a) through 2(c) and the second to steps 3(a)
through 3(d). The total size of the messages sent is proportional to KPS, which is
the number of δs,k,i parameters. The key features of (4.1) are that both the time and
number of messages are linear in the number of time periods T and the number of
sites S, and that, for the terms proportional to T , a linear speedup can be achieved
by using N computing nodes.

The implementation is written as an R package in the R language and in C++
(using RcppArmadillo), and is distributed across multiple computing nodes using
the Rmpi package (R Core Team (2016), Eddelbuettel and Sanderson (2014), Yu
(2002)). Multithreading is implemented with OpenMP.14 The R package for esti-
mating the parameters of the model presented in this article is available online.15

14http://openmp.org/wp/.
15https://github.com/mbertolacci/storm/.

http://openmp.org/wp/
https://github.com/mbertolacci/storm/
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FIG. 4. Trace plots for a selection of parameters from the MCMC samples giving rise to the results
in Section 5.

Using the sampling scheme in Section 4.1, 40,000 posterior samples corre-
sponding to the model with K = 2 were generated using a Cray XC40 supercom-
puter with nodes of 64 GB of RAM, with two 2.6 GHz Intel Xeon E5-2690 v3
CPUs with 12 cores each for a total of 24 cores per node. We used 52 nodes with
339 sites per node, for a total of 1248 cores. It took around eight hours to generate
the 40,000 samples, the first 5000 of which were discarded as burn-in. Conver-
gence was assessed using trace plots, a selection of which is shown in Figure 4.

5. Results. We present the results for the model with a point mass at zero and
K = 2 gamma components, which is interpretable as corresponding to zero, light
and heavy rainfall days. Figure 5 displays the posterior mean density estimates of
the two gamma components and shows that one of the densities (f1) has probabil-
ity mass concentrated between 0 and 6 mm, while the other has higher probability
mass for daily rainfall greater than 6 mm. Section 5.1 assesses the model perfor-
mance for K = 2 by its posterior predictive coverages (PPC), predictive quantiles
and daily temporal dependencies. Section 5.2 reports posterior inference regard-

FIG. 5. Posterior density estimates for K = 2 gamma components show clear separation.
The posterior mean estimates (and their standard errors), of the density parameters are:
â1 = 1.144 (0.0004), b̂1 = 2.463 (0.0017) and â2 = 1.100 (0.0005), b̂2 = 14.13 (0.006).
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ing the association of the oceanic/atmospheric interactions with Australian daily
rainfall, as well as its long term trend.

As indicated in Section 1, much work has been done investigating the types and
number of mixture components required to adequately capture the tail behavior of
temporally evolving daily rainfall. For inferential interpretability, the main article
reports results on K = 2 gamma components, but the model is easily extended to
more components, and Bertolacci et al. (2019b) present results corresponding to
K = 3 which show no significant improvement in PPC.

5.1. Model performance. The model’s performance is evaluated by compar-
ing the observed data to the posterior predictive distribution

(5.1) p
(
y∗

s |yobs) =
∫

p
(
y∗

s |yobs,�s,·,·, θ
)
p

(
�s,·,·, θ |yobs)d(�s,·,·, θ),

where y∗
s denotes a predicted value and yobs = (yobs′

1 , . . . ,yobs′
S )′. Conditional

on the latent component indicators, the first expression in the integrand of equa-
tion (5.1) can be evaluated as follows:

p
(
y∗

s |yobs,�s,·,·, θ
) = ∑

z∗
s

(
T∏

t=1

fz∗
t,s

(
y∗
t,s |θz∗

t,s

)
p

(
z∗
t,s |z∗

t−1,s,�s,·,·
))

,

where the sum is taken over all possible indicator vectors z∗
s . The MCMC scheme

of Section 4 is used to draw samples from equation (5.1) and obtain PPC of
monthly rainfall. In particular, equation (5.1) is approximated by

1

L

L∑
j=1

p
(
y∗

s |yobs,�[j ]
s,·,·, θ [j ]),

where �
[j ]
s,·,· and θ [j ] are the j th draws from p(θ ,�s,·,·|yobs), and L is the number

of draws after burn-in.

5.1.1. Posterior predictive coverage (PPC) of monthly rainfall. For month M

and site s, let ȳM,s be the empirical average rainfall, that is, the average of recorded
rainfall in month M at site s, and let ȳ0

M,s be the proportion of days with a recorded
rainfall of zero in month M at site s. Let p̂(ȳ∗

M,s |yobs) be the estimated posterior

predictive distribution of average rainfall and let p̂(ȳ0∗
M,s |yobs) be the estimated

posterior predictive distribution of the proportion of days without rain.
We define the 100(1 − α)% PPC interval for site s in month M to be the in-

terval [ȳ∗
α/2, ȳ

∗
1−α/2] which satisfies p̂(ȳ∗

α/2 < ȳ∗|yobs) = 1 − α/2 and p̂(ȳ∗
1−α/2 <

ȳ∗|yobs) = α/2, with intervals for ȳ0∗ defined analogously. These quantities vary
across sites, s, and months, M , but the subscripts s and M are suppressed for
clarity. However, due to the large number of zero-rainfall days in the dataset, the
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definition of these intervals must be modified slightly. If ȳ∗
α/2 = 0 for a particu-

lar site s and month M , we take the 100(1 − α)% PPC interval to be [ȳ∗
0 , ȳ∗

1−α].
Similarly, if ȳ0∗

1−α/2 = 1, we take the interval to be [ȳ0∗
α , ȳ0∗

1 ].
Figure 6 illustrates the model’s ability to capture the marginal temporal vari-

ability of Australian daily rainfall. Figure 6(a) plots pointwise quantiles of the
posterior predictive distribution p̂(ȳ∗

M,s |yobs) for the eight sites discussed in Sec-
tions 1 and 2. In particular, we plot the rainfall, ȳ∗

0.5 (red solid line), and the band
consisting of PPC intervals [ȳ∗

α/2, ȳ
∗
1−α/2], corresponding to α = 0.5 (shaded dark

pink band), and α = 0.2 (shaded light pink band), against time, along with the
observed data. Figure 6(b) displays the analogous plots for ȳ0∗

M,s .
These plots illustrate that the model given in equation (3.7), which incorporates

the dependence of time and other covariates via the mixture weights, can accom-
modate spatially varying rainfall patterns. For example, the time series plots of
Cape Naturaliste and Oenpelli show that the model can accommodate phase shifts
in seasonality (winter dominance vs. summer dominance). Cape Naturaliste (clas-
sified as Winter Dominant rainfall) reports high probabilities of zero rainfall/low
monthly averages in the summer months and vice-versa for winter months. Oen-
pelli (classified as Summer Dominant rainfall) reports high probabilities of zero
rainfall/low monthly averages in the winter months and vice-versa for summer
months. Sites classified as Uniform rainfall (Cataract Dam, Gabo Island Light-
house and Sorell) show less pronounced seasonality.

Figure 7 illustrates the predictive performance of the model across all sites. The
top panel displays histograms of the proportion of observed monthly averages for
site s which lie in the interval [ȳ∗

0.25,s , ȳ
∗
0.75,s], (left) and [ȳ∗

0.1,s , ȳ
∗
0.9,s], (right), for

sites s = 1,2, . . . ,17,606. To emphasize the dependence of these intervals on the
site we have included the subscript s. These histograms show that the model-based
quantiles of ȳobs

M,s agree with the data; the average across all sites and months of
the proportion of observed monthly averages, which lie in the model-based PPC
50% interval, is also 50% (left), and the corresponding proportion for the PPC
80% interval is 78% (right). The bottom panel displays analogous histograms for
the proportion of dry days, ȳ

0,obs
M,s which fall within the PPC 50% interval (left) and

80% interval (right). The average proportion of values which lie within the PPC
intervals is 56% for the PPC 50% intervals, so that these intervals are only slightly
wide on average, and 78% for the PPC 80% intervals, so that these intervals are
only slightly narrow on average.

Finally, Figure 8 shows the estimated predictive mean of the probability that
daily rainfall belongs to components k = 0,1 and 2 (i.e., p(π∗

t,s,k|yobs)) for the
eight illustrative sites. Figure 8 demonstrates that the model captures expected
heterogeneity on many aspects: opposite peak rainfall times for the Summer Dom-
inant and Winter Dominant sites, and the appropriate weighting of the compo-
nents at different sites and different times. For example, the model assigns higher
weights to the heavy rainfall component, k = 2, for the tropical site Oenpelli than
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FIG. 6. Plots of the posterior predicted median rainfall and proportion of days without rain, ȳ∗
0.5

and ȳ0∗
0.5 (red solid line), PPC intervals [ȳ∗

0.25, ȳ∗
0.75] and [ȳ0∗

0.25, ȳ0∗
0.75] (shaded dark pink band), and

[ȳ∗
0.1, ȳ∗

0.9] and [ȳ0∗
0.1, ȳ0∗

0.9] (shaded light pink band), against time, along with the observed data for
the eight sites, based on K = 2. Open squares mark observed data values which lie outside the 80%
PPC band, crosses mark those inside the 80% PPC band but outside the 50% band, and filled circles
mark those within the 50% band.

for the Winter Dominant site Cape Naturaliste, higher weights for both the light
and heavy components, indicating more rainfall in the appropriate seasons for sites
with seasonally varying rainfall, and variation among years due to the climate co-
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FIG. 7. The proportion of observed monthly averages, ȳobs
M,s , (top panel), which fall within the

PPC 50% interval (left) and 80% interval (right) for all 17,606 sites, and the proportion of observed
monthly proportion of dry days, ȳ0obs

M,s (bottom panel), which fall within the PPC 50% interval (left)
and 80% interval (right), for the model with K = 2.

variates. These results, combined with accurate overall PPC of rainfall intensity
and the probability of zero rainfall discussed above, indicate good model perfor-
mance.

5.1.2. Predictive quantiles of nonzero daily rainfall. In this section, we exam-
ine the agreement between empirical quantiles of nonzero rainfall and quantiles
obtained from our model’s predictive densities. Metrics are computed for each of

FIG. 8. Mean predictive probability of being in each component for each day for the model with
K = 2. The zero rainfall component is k = 0, and k = 1,2 are the small and large rainfall compo-
nents, respectively.
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March–May (autumn), September–November (spring), December–February (sum-
mer) and June–August (winter), using the sites that have at least 100 days of
nonzero rainfall in that season. Let q̂p,T (s) and q∗

p,T (s) be, respectively, the em-
pirically estimated and posterior predictive pth quantile at site s in season T . As a
measure of agreement between q̂p,T (s) and q∗

p,T (s), we define

(5.2) Dp,T (s) = Ê

[
log

q∗
p,T (s)

q̂p,T (s)

∣∣∣yobs
]
,

the estimated posterior predictive mean of the log ratio of q∗
p,T (s) and q̂p,T (s).

When Dp,T (s) is zero, the posterior predictive quantile matches the empirical
one, while if the model over/underestimates the empirical quantile, Dp,T (s) is
positive/negative, with larger absolute values indicating poorer performance.

For each T = autumn, spring, summer, and winter and each percentile p =
1%,2%, . . . ,99%, Figure 9 shows the median value, D̃p,T , and the interquartile
range (IQR) of Dp,T (s) across all sites. We define nominal performance for the
percentile and season pair (p,T ) as the IQR of Dp,T (s) containing zero. For all
seasons, performance is nominal for 7% ≤ p ≤ 86%. For autumn and summer,
performance is also nominal when p > 86%. The percentiles corresponding to
p > 86% in spring and winter are overestimated, and the degree of overestimation
increases towards p = 99%. In autumn, spring, summer and winter, the percentiles
corresponding to p < 5%,7%,6% and 6%, respectively, are underestimated, and
the degree of underestimation increases towards p = 1%. To investigate the effect
of the number of components on the model fit in the tails of the distribution, the
performance for K = 3 is reported in the supplementary material (Bertolacci et al.
(2019b)). The addition of another component expands the range of percentiles
showing nominal performance in all seasons to 4% ≤ p ≤ 96%.

For illustrative purposes, we examine Q–Q plots of the empirical quantiles of
nonzero daily rainfall for summer and winter against quantiles obtained from the
predictive densities at the eight illustrative sites. Figure 10 presents these Q–Q
plots, where top rows correspond to summer months and bottom rows to win-
ter months. As in the case of Dp,T (s), percentiles up to around 90% show good
agreement for most sites. In Figure 9, the lowest percentiles were underestimated,
but this is difficult to see in the Q–Q plots, which suggests that, on the scale of mil-
limeters, underestimation of the low percentiles is small. For the 90% and greater
percentiles, the three sites that show the worst performances are: summer (tropical
wet season) rainfall at Oenpelli is underestimated, winter (wet season) rainfall at
Cape Naturaliste is overestimated and summer and winter rainfall at Cataract Dam
are underestimated. Bertolacci et al. (2019b) present Q–Q plots for the model with
K = 3; the addition of another component improves the estimation, especially at
Oenpelli, although for the other seven sites, the improvement from increasing K

from 2 to 3 is marginal.
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FIG. 9. Median values (points) and interquartile range (shaded band) of Dp,T (s) across all sites,
s, for each T = autumn, spring, summer, and winter (top panel to bottom panel, respectively) and
each p = 1%,2%, . . . ,99%, for the model with K = 2. A black circle indicates that the correspond-
ing percentile/season is nominal (i.e., the IQR of Dp,T (s), s = 1, . . . , S, contains zero), while a red
triangle indicates that it is not.

Taken together, Figures 9 and 10 show that K = 2 performs well across the
majority of sites, but that the tail of the distribution at some sites, such as Oen-
pelli and Cape Naturaliste, remain difficult to estimate. While K = 3 improves
the model’s ability to capture tail behavior, future work into K > 3 or the inclu-
sion of heavier tailed distributions (such as the Generalized Pareto or Extended
Generalized Pareto distributions) would be of interest. For the application in this
paper, Bertolacci et al. (2019c) presents a simulation study demonstrating that the
model’s ability to perform climate inference is not compromised by the presence
of excessively heavy-tailed data.

5.1.3. Daily temporal dependencies. This section presents metrics of daily
temporal dependence for the data and the model fits. The dataset contains sub-
stantial dependencies in time, as well as substantial variation in the strengths of
those dependencies across sites. The left-hand panel of Figure 11 shows a his-
togram of the empirical first-order autocorrelations of rainfall amount at the daily
level, calculated using Spearman’s rank correlation, and denoted by Rs(1) for site
s, for each of the 17,606 sites.
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FIG. 10. Q–Q plots for days with nonzero rainfall for summer (top rows) and winter (bottom rows)
for the model with K = 2. 80% posterior intervals for each quantile shown by grey shaded bands.
Oenpelli in winter is omitted as it has had fewer than 100 days with nonzero rainfall.

The log odds that subsequent days within a site have the same rainfall occur-
rence are defined as

(5.3) LOs(1) = log
p(yt,s = 0, yt+1,s = 0) + p(yt,s > 0, yt+1,s > 0)

p(yt,s = 0, yt+1,s > 0) + p(yt,s > 0, yt+1,s = 0)
,
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FIG. 11. Histograms of the estimated Spearman autocorrelation of rainfall amount for each site,
Rs(1) (left), and the log odds of having the same rainfall occurrence on subsequent days LOs(1)

(right). Metrics are for each site, measured between the pairs (yt,s , yt+1,s ).

and are estimated using empirical counts of each event for each site (see Charles,
Bates and Hughes (1999)). The right-hand panel of Figure 11 displays a histogram
of the resulting empirical log odds. The histograms in Figure 11 show that the vast
majority of sites have positive dependence between days, and that the strength of
the dependence varies from site to site. These dependencies may have many com-
ponents, including seasonal and climate factors, the influence of climate drivers,
and local atmospheric effects that persist between days.

Using the posterior predictive distribution, we assess the model’s ability to cap-
ture the temporal dependencies shown in Figure 11. Using samples from the pos-
terior predictive distribution of equation (5.1), we estimate the posterior predictive
distributions of Rs(1) and LOs(1), denoted by p̂(ρ∗

s (1)|yobs) and p̂(LO∗
s (1)|yobs),

respectively. These posterior predictive estimates are plotted against the empirical
estimates in Figure 12. The posterior median estimates for Spearman’s autocorre-
lation of rainfall amount, Rs(1) (left plot), broadly match the empirical estimates,
with most points close to the diagonal. For the log odds of having the same rainfall
occurrence, LOs(1) (right plot), the points are again close to the diagonal. These

FIG. 12. Scatter plots of posterior predictive medians versus empirical estimates for Spearman’s
autocorrelation Rs(1) (left) and the log odds of having the same rainfall occurrence on subsequent
days LOs(1) (right) for each site.
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plots suggest that the first-order Markovian structure of equation (3.6), along with
the covariates, are sufficient to capture within-site temporal dependencies.

5.2. Climate inference. As mentioned in Section 1, explicit temporal depen-
dencies are present at the observation level of the model hierarchy, including
trends, seasonality, covariates and short-term dependencies, but for the sake of par-
simony and inferential interpretability, spatial dependence is modeled only through
the mixture weights’ parameters—not at the observational level. Section 5.1.3 pro-
vides metrics indicating that the temporal dependencies of daily rainfall at individ-
ual sites are modeled satisfactorily. Bertolacci et al. (2019c) presents similar met-
rics for contemporaneous spatial dependencies, which are, as expected, not fully
captured by the model. Although capturing these dependencies is not the purpose
of this work, their presence could potentially impact the estimation of the influence
of climate drivers. However, Bertolacci et al. (2019c) demonstrate via a simulation
study that the model is able to detect statistically significant and nonsignificant
effects of external covariates in the presence of spatially correlated data.

In this section, we first examine the long-term trend of Australian daily rainfall
over the past 139 years. Second, we examine the dependence between the oceanic
and atmospheric interactions, as encoded by the covariates SOIt , DMIt and SAMt ,
and Australian daily rainfall, as well as the way in which this dependence varies
across the Australian continent.

We examine the spatially varying long-term evolution in the distribution of daily
rainfall in Australia by looking at changes in the mixture weights. Equation (3.6)
describes the spatially varying parameters in the multinomial logit weights, where
δs,k,2 corresponds to Trendt . Positive values of δs,k,2 indicate that the mixture
weight assigned to component k = 1,2 has increased over time relative to the zero-
rainfall component, k = 0 (recall that δs,0,· ≡ 0). We present our inference on δs,k,2
via maps of the estimated posterior 10%, 50% and 90% quantiles of their means,
μs,k,2, across the entire spatial field of Australia, evaluated using a 60 × 60 grid.
Thus, when both the 10% and 90% maps at a given location are blue (or red), zero
is not included in the corresponding 80% credible interval, in which case we say
that μs,k,2 is significantly different from zero. On the other hand, a change from
red to blue (or blue to red) between the 10% and 90% maps at the same location,
indicates lack of significance.

Figure 13 shows maps of these estimated posterior quantiles. The upper row
corresponds to μs,1,2, where the left, middle and right maps display the 10%, 50%
and 90% quantiles, respectively. The middle and bottom rows are analogous maps
for μs,2,2 and μs,2,2 −μs,1,2. The top row, k = 1, shows that the low-rainfall com-
ponent of the distribution of daily rainfall in the southwest and northeast corners of
Australia has significantly decreased over time relative to the zero-rainfall compo-
nent, while in the northwest of Australia it has significantly increased. The middle
row shows that the heavy-rainfall component of daily rainfall in the southwest-
ern corner of Australia and the mid-northeast coast of Australia has decreased,
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FIG. 13. Maps of posterior 10%, 50% and 90% (columns) quantiles of μs,k,p (k = 1,2 in 1st and
2nd row, respectively, of each panel) and of μs,2,p −μs,1,p (bottom row of each panel) for the model
with K = 2, where p = 2 (Trendt ) in panel (a) and p = 5 (SOIt ) in panel (b).

relative to the zero-rainfall component, while in northwestern Australia it has in-
creased. The top and middle rows in Figure 13(a) considered together suggest that
the southwest and mid-northeastern coast of Australia are experiencing more dry
days, while the northwest of Australia is experiencing fewer dry days. The bottom
row of Figure 13(a) shows that on days on which rain occurs, it is more extreme in
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the northeastern regions of Australia, while the reverse is true for the southwestern
corner of Australia and mid-southeastern coast of Australia. Taken all together,
Figure 13(a) indicates the southwestern corner has experienced a significant de-
cline in rainfall levels. This result agrees with the climate science literature that
speculates the decline in southwestern Australia rainfall levels is a consequence
of land clearing (e.g., Andrich and Imberger (2013), Kala, Lyons and Nair (2011),
Pitman et al. (2004)).

Similarly, Figures 13(a), 14(a) and 14(b) show the posterior quantiles for μs,k,5,
μs,k,6 and μs,k,7, respectively, corresponding to the covariates SOIt , DMIt , and
SAMt . Most locations display the same color for both the 10% and 90% quan-
tiles, indicating significant relationships over much of Australia. In addition, in-
ference regarding SOIt and DMIt matches previous work: positive SOIt and neg-
ative DMIt values are associated with more rainfall across most of the continent,
with the opposite effect for negative SOIt and positive DMIt (Ummenhofer et al.
(2011)). These results also match those for regions that have been investigated
elsewhere in detail, so that, for instance, the eastern seaboard receives more rain
for positive DMIt (Pepler et al. (2014)). Furthermore, it appears that for most of the
continent, positive SOIt values are associated with rainfall which is more intense
and variable, while for negative DMIt values, the effect is ambiguous.

Our results for SAMt are mixed. The top and middle rows of Figure 14(b) show
that positive values of SAMt are related to increases of rainfall for the southwest
tip of Australia and to decreases in rainfall for the northwest coast of Australia. The
bottom row shows that on days when rain is recorded, positive values of SAMt are
related to less heavy rain for southern Australia. This is in contrast with the climate
literature that discusses the association of positive SAMt values with decreased
rainfall levels in southern Australia (Risbey et al. (2009)), in particular, the south-
western and southeastern tips of Australia (e.g., Hendon, Thompson and Wheeler
(2007)). Also in contrast to the climate literature is the aforementioned decrease
in rainfall for the northwest coast of Australia, a key feature of Figure 14(b) that
does not, to our knowledge, appear in other research. Risbey et al. (2009) found
no significant association between the values of SAMt and rainfall in this region.
Possible explanations for this discrepancy include differences in model construc-
tion, SAM index construction, the observational period (1957 to 2009 in Risbey
et al. (2009)) and the granularity of the data. For example, the aggregation of daily
to monthly data may mask the impact of SAMt on rainfall.

6. Discussion and conclusion. We have presented a Bayesian mixture model
for high dimensional nonstationary time series that accommodates nonstandard
measurements and provides spatially varying inference. The effects of external
covariates, and short and long-term temporal dependencies, are modeled through
a mixture-of-experts model. A Gaussian process prior models the spatial depen-
dencies of the model’s mixture weights’ parameters, the posterior distribution of
which provides spatially varying inference.
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FIG. 14. Maps of posterior 10%, 50% and 90% (columns) quantiles of μs,k,p (k = 1,2 in 1st and
2nd row, respectively, of each panel) and of μs,2,p −μs,1,p (bottom row of each panel) for the model
with K = 2, where p = 6 (DMIt ) in panel (a) and p = 7 (SAMt ) in panel (b).

The model has been tailored to understand the evolution of Australian daily
rainfall over time and space, as well as the dependence between Australian daily
rainfall and climate drivers via the choice of covariates and the specification of
interpretable mixture components in a fully probabilistic framework. Extensions to
more components and to other covariates are available to future users via publicly
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available software. Work is underway to include an explicit spatial structure at the
observational level that still scales to data sets such as the one presented in this
article.

The data set used in this study is very large, with the observational period from
February 1st, 1876 to December 31st, 2015, spanning 17,606 sites, resulting in
more than 294 million observations. Analysis at this scale requires a suite of com-
putational innovations. The innovations presented in this paper are encapsulated
in an R package available for use in either a parallel and distributed environment
for large data sets such as ours, or in standard serial computing environment for
smaller data sets.

SUPPLEMENTARY MATERIAL

Supplement A: Model comparison supplement for “Climate inference on
daily rainfall across the Australian continent, 1876–2015” (DOI: 10.1214/18-
AOAS1218SUPPA; .pdf). We fit the model with K = 3 gamma components and
compare the results to those corresponding to K = 2 gamma components.

Supplement B: Conditional distributions for the sampling scheme in “Cli-
mate inference on daily rainfall across the Australian continent, 1876–2015”
(DOI: 10.1214/18-AOAS1218SUPPB; .pdf). We derive the conditional distribu-
tions used by the sampling scheme described in Section 4.1 of this paper.

Supplement C: Temporal and spatial diagnostics for “Climate inference on
daily rainfall across the Australian continent, 1876–2015” (DOI: 10.1214/18-
AOAS1218SUPPC; .pdf). We present log-odds and Spearman correlation diagnos-
tics for the application to Australian daily rainfall, 1876–2015, along with a simu-
lation study to assess the model’s ability to perform spatially varying inference in
the presence of spatially correlated observations.
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