WOMBAT: A fully Bayesian global flux-inversion framework

National Institute for Applied Statistics Research Australia (NIASRA) University of Wollongong, Australia

arXiv preprint: <u>https://arxiv.org/abs/2102.04004</u> Contact: michael_bertolacci@uow.edu.au

The <u>WO</u>llongong <u>Methodology</u> for <u>Bayesian Assimilation of Trace-gases</u>

Michael Bertolacci (michael_bertolacci@uow.edu.au)

Key members and their disciplines:

- Andrew Zammit-Mangion (Statistics)
- Michael Bertolacci (Statistics)
- Jenny Fisher (Atmospheric Chemistry)
- Yi Cao (IT)
- Noel Cressie (Statistics)

Other key members:

Matt Rigby, University of Bristol, UK (Atmospheric Chemistry) Ann Stavert, CSIRO, Australia (Atmospheric Chemistry)

Valuable input/feedback: Several others including Andrew Schuh, Anita Ganesan, Peter Rayner, Beata Bukosa, and members of the OCO-2 Flux Group.

arXiv preprint: <u>https://arxiv.org/abs/2102.04004</u>

Human influence on the climate system is clear, and recent anthropogenic emissions of greenhouse gases are the highest in history. [...]

Continued emission of greenhouse gases will cause further warming and longlasting changes in all components of the climate system.

Quote: IPCC (2014), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Data: Dr. Pieter Tans, NOAA/GML (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/)

Estimated change in the CO₂ field in response to a month of emissions in North America

Cumulative concentration change on 2016-01-01

This requires a detailed understanding of where CO_2 is:

- •emitted (sources)
- absorbed (sinks)

Efforts to reduce net CO₂ emissions must be global.

CO₂ fluxes are hard to measure directly

For manmade sources there are good proxy measurements for emissions, such as electricity usage

This is not true for natural sources and sinks! However, CO_2 concentrations are (relatively) easy to observe

[Images by joelbeeb (top) and Hansueli Krapf (bottom) licensed under <u>CC BY-SA 3.0</u>]

Working backwards from CO₂ concentrations to fluxes is called flux inversion

WOMBAT: The underlying statistical model

Flux field: $Y_1(\mathbf{s}, t)$, $\mathbf{s} \in \mathbb{S}^2$, $t \in \mathbb{R}$

Mole-fraction field: $Y_2(\mathbf{s}, h, t)$, $\mathbf{s} \in \mathbb{S}^2$, $h \ge 0$, $t \in \mathbb{R}$

(Example plausible values averaged over 3 hours around UTC midnight on 2016-01-01.)

 \bigcirc

 $A(Y_2(s, ., t))$ [ppm]

395

400

 $Y_2(\mathbf{s}, h, t) = \int G(\mathbf{s}, h, t; \mathbf{u}, r) Y_1(\mathbf{u}, r) d(\mathbf{u}, r) + v_2(\mathbf{s}, h, t)$

Cumulative concentration change on 2016-01-01

Emissions on 2016-01-01

The flux field drives the mole-fraction field:

Data: $Z_{2,i}$, for $i \in \{1, ..., m\}$

(Observations over the period 2016-01-01 to 2016-01-07, inclusive)

A (partial) hierarchical Bayesian framework for flux inversion

Z_{2,i} [ppm] 395 405 400

The goal in flux inversion is to infer the flux field, $Y_1(\mathbf{s}, t)$, and quantify uncertainty in:

- the bias-correction coefficients, β , and errors
- atmospheric transport via transport error
- the flux field $Y_1(\mathbf{s}, t)$ itself

Gridded flux field: hourly at 2° lat × 2.5° lor height

 \Rightarrow 314,496 unknowns per day

Study period: 2 years with 314,496 unknowns per day ⇒ around 220 million unknowns

hourly at 2° lat $\times 2.5^{\circ}$ lon with polar cells at half-

We decompose the flux field into prior mean, basis functions, and fine-scale term:

 $Y_{1}(\mathbf{s},t) = Y_{1}^{0}(\mathbf{s},t) + \sum \phi_{i,j}(\mathbf{s},t)\alpha_{i,j} + \nu_{1}(\mathbf{s},t)$ i=1 j=1 Flux basis functions and scalings Fine-scale flux Flux prior mean

where j ranges over n_t months, i ranges over n_s regions, and $E[\alpha_{i,i}] = 0$

which introduces correlation from month-to-month.

The fluxes evolve through $\alpha_{i,j} = \rho_i \alpha_{i,j-1} + v_{i,j}, v_{i,j} \sim N(0,\sigma_i^2)$,

The 22 TransCom3 regions

Recall that the flux field has a basis function representation

$$Y_1(\mathbf{s}, t) = Y_1^0(\mathbf{s}, t) + \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \varphi_{i,j}(\mathbf{s}, t) \alpha_{i,j} + \nu_1(\mathbf{s}, t)$$

And that

$$Y_2(\mathbf{s}, h, t) = \int G(\mathbf{s}, h, t; \mathbf{u}, r) Y_1(\mathbf{u}; r) d(\mathbf{u}, r) + \nu_2(\mathbf{s}, h, t).$$

Interchange integration and summation and assume $\nu_1(\mathbf{s}, t) = 0$:

$$Y_2(\mathbf{s}, h, t) = Y_2^0(\mathbf{s}, h, t) + \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \psi_{i,j}(\mathbf{s}, h, t) \alpha_{i,j} + \nu_2(\mathbf{s}, h, t),$$

or more succinctly

$$Y_2(\mathbf{s}, h, t) = Y_2^0(\mathbf{s}, h, t) + \psi(\mathbf{s}, h, t)' \alpha + \nu_2(\mathbf{s}, h, t).$$

That is, the mole-fraction field has a corresponding basis function representation.

Based on several "inventories": bottom-up estimates of CO₂ sources and sinks due to fossil fuels, fires, biofuels, the oceans, and the biosphere

Computed conditional on $Y_1(\cdot, \cdot)$ by an atmospheric transport model (GEOS-Chem), driven by estimated meteorological fields (GEOS-FP)

$n_{\rm s}$ $Y_1(\mathbf{s}, t) = Y_1^0(\mathbf{s}, t) + \sum \sum \varphi_{i,i}(\mathbf{s}, t) \alpha_{i,i} + \nu_1(\mathbf{s}, t)$ i=1 j=1

 $Y_2(\mathbf{s}, h, t) = Y_2^0(\mathbf{s}, h, t) + \sum \psi_{i,i}(\mathbf{s}, h, t) \alpha_{i,i} + \nu_2(\mathbf{s}, h, t)$

Estimating the model

- Carlo (MCMC):
- \Rightarrow Posterior distributions on all unknowns.
- of flux field).

WOMBAT performs inference using Markov chain Monte

 \Rightarrow Can estimate posterior of functionals of unknowns (e.g.

A simulation study, and flux estimates

Simulation study: the importance of bias correction and correlated errors

WOMBAT's data model Bias correction $Z_{2,i} = \mathscr{A}_i(Y_2(\mathbf{s}_i, \cdot, t_i)) + \mathbf{x}'_i\boldsymbol{\beta} + \xi_i + \epsilon_i$ Correlated + uncorrelated errors Model performance in an OSSE experiment when estimating fluxes at the TransCom3 level when the data are biased and have correlated errors: RMSE [PgC/mo] Inversion configuration LG Bias correction/correlated 0.023 Bias correction/uncorrelated 0.038 No bias correction/correlated 0.045 0.092 No bias correction/uncorrelated Lower is better

- WOMBAT's data model has both bias correction and a correlated error term
- We investigated the importance of these features in a simulation study where the simulated data are biased and have correlated errors
- Flux estimation performance is severely impacted if these are ignored

Real data results

through to December, 2016

Fossil-fuel fluxes were assumed known, and nonfossil-fuel fluxes were estimated.

We used WOMBAT with two years of OCO-2 data to estimate fluxes for the period of January, 2015

The breathing Earth: WOMBAT's posterior CO₂ fluxes for 2015–2016

Posterior emissions on 2015-01

0.5

1.0

(Estimated monthly posterior natural flux for each grid cell)

Conclusions, and the future

- WOMBAT is a flux-inversion system used for inferring the sources and sinks CO₂ using atmospheric concentration data
- It provides estimates of fluxes with uncertainty quantification
- Some future planned work:
 - Use multiple transport models to investigate errors in transport
 - With New Zealand's NIWA, investigate the use of WOMBAT's posterior fluxes as boundary conditions for a regional CO₂ inversion over parts of Oceania
 - Gases other than CO₂

arXiv preprint: <u>https://arxiv.org/abs/2102.04004</u>

(Photo taken on the Eyre Highway in the remote Nullarbor region of Australia)

